Что такое биосистема. Биоразнообразие. Уровни организации биосистем Основные особенности взаимодействия биосистемы с окружающей средой

Эволюция живого привела к формированию существующего ныне на планете биоразнообразия. За всю историю Земли на ней обитало от одного до двух миллиардов видов живых существ, большая часть которых вымерла. Однако и современное многообразие биологических видов потрясающе велико. Ученым известно не менее 1,4 млн. видов, обитающих на планете, в том числе не менее 4000 видов млекопитающиих, 9000 – птиц, 19000 рыб, 750000 насекомых, 210000 цветковых растений. Учитывая еще не описанные виды, общее число видов оценивается в диапазоне 5-30 млн. (Грант, 1991). «Полагают, что сейчас на нашей планете обитает свыше миллиона видов животных, 0,5 млн. вида растений, до 10 млн. микроорганизмов, причем эти цифры занижены» (Медников, 1994).

Такие различные организмы, как крошечные бактерии и гигантские синие киты, одноклеточные корненожки и человекообразные обезьяны, цветковые растения и насекомые – все входят в состав единого планетарного «тела биоса». Подобно целостному организму, биос зависит в своем существовании от гармоничного, слаженного функционирования всех “систем органов”. В роли “органов” и их “систем” выступают разнообразные группы живых существ. Описание этого био-разнообразия в различных его аспектах и гранях весьма важно как с точки зрения охраныэтого разнообразия, так и в концептуальном плане. Для биополитики особенно существенное значение имеет приложе­ние принципа, аналогичного “биоразнообразию”, к политическим системам с их плюрализмом, взаимодополни­тель­ностью и взаимозависимостью. Понятие “биоразнообразие” включает несколько различных аспектов.

3.3.1. Разнообразие видов живого с точки зрения систематики. Виды группируются в роды, роды – в семейства и т.д., пока мы не доходим до самых крупных из основных подразделений многообразия живого – империй, которые подразделяются на царства.. Наиболее фундаментальное различие современные систематики усматривают между прокариотами («доядерными») иэукариотами («истинноядерными»). Это и есть две империи: к империи прокариот (Prokaryota ) относятся микроскопические существа – бактерии; к империи эукариот (Eukaryota ) -- все остальные формы жизни – простейшие, грибы, растения, животные (включая человека).



«Прокариотная клетка отличается тем, что имеет одну внутреннюю полость, образуемую элементарной мембраной, называемой клеточной, или цитоплазматической (ЦПМ). У подавляющего большинства прокариот ЦПМ - единственная мембрана, обнаруживаемая в клетке. В эукариотных клетках в отличие от прокариотных есть вторичные полости. Ядерная мембрана, отграничивающая ДНК от остальной цитоплазмы, формирует вторичную полость… Клеточные структуры, ограниченные элементарными мембранами и выполняющие в клетке определенные функции, получили название органелл. В клетках прокариот органеллы, типичные для эукариот, отсутствуют. Ядерная ДНК у них не отделена от цитоплазмы мембраной.» (Гусев, Минеева, 2003). В пределах каждой империи различные авторы выделяют различное количество царств. Так в классификации Уиттекера (Whittaker, 1969) империя эукариот дробится на 4 царства – протисты, или простейшие, грибы, растения и животные, а прокариоты (синоним – монеры) считаются единым царством. В нижеследующей классификации от схемы Уиттекера допущено единственное отступление – прокариоты поделены на 2 царства – эубактерий и архей (архебактерий), что соответствует фундаментальному характеру различий между ними.

1. Империя прокариот (Prokaryota ). Организмы, в большинстве случаев представляющие собой одну клетку. Недостижимое для других групп разнообразие условий обитания и часто невероятная пластичность. Типы питания весьма разообразны. Их характеризуют по природе источников трех необходимых компонентов жизни: энергии, углерода и водорода (источника электронов). По источнику энергии различают две категории организмов: фототрофы (использующие солнечный свет) и хемотрофы (использующие энергию химических связей в питательных веществах. По источнику углерода выделяют автотрофы (СО 2) и гетеротрофы (органическое вещество). Наконец, по источнику водорода (электронов) различают органотрофы (потребляющие органику) и литотрофы (потребляющие производные литосферы – каменной оболоочки Земли: Н 2 , NH 3 , H 2 S, S, CO, Fe 2+ и т.д.) По такой классификации зеленые растения (см. ниже) – фотолитоавтотрофы, животные и грибы – хемоорганогетеротрофы. В мире прокариот встречаются самые разнообразные сочетания. Прокариоты могут быть далее подразделены на

· Царство эубактерии (Eubacteria, «обычные бактерии»). Клеточная стенка обычно содержит специфическое вещество – пептидогликан (муреин). Царство включает разнообразных представителей – от мирных сожителей человека типа кишечной палочки (Escherichia coli ) до опасных патогенов (возбудителей чумы, холеры, бруцеллеза и др.), от обогатителей почвы ценными азотистыми веществами (например, представители рода Azotobacter ) до окислителей железа (железобактерии Thiobacter ferooxidans ) и тех, кто способен фотосинтезировать подобно растениям, в том числе и с выделением кислорода (цианобактерии). В последние годы в некоторых работах царство «бактерии» делят на несколько самостоятельных царств.

· Царство археи(или архебактерии – Archaea или Archaebacteria ), обитающие в экзотических условиях (одни в полном отсутствие кислорода; другие – в насыщенным растворе соли; третьи – при 90-100 о С и т.д.) и имеющие своеобразное строение клеточной стенки и внутриклеточных структур. По некоторым признакам (например, организация рибосом) археи ближе не к про-, а к эукариотам («сестринская связь» архей и эукариот, см. Воробьева, 2006).

2. Империя эукариот (Eukaryota ). Как уже подчёркивалось, в империю эукариот входят организмы с вторичными полостями клеткок – органеллами, включая и ядро. Эукариоты включают в себя царства: простейшие, грибы, растения и животных:

· Царство простейшие (Protista ) Одноклеточные или колониальные (рыхлое объединение способных существовать самостоятельно клеток) организмы, имеющие клеточное ядро, окруженное двойной мембраной. По способу получения энергии делятся на группы, напоминающие 3 царства, данные ниже (есть протисты, подобные грибам, растениям и животным).

· Царство растения (Plantae ). Многоклеточные организмы, способные к усвоению энергии света (фотосинтезу) и потому часто не нуждающиеся в готовых органических соединениях (ведущие автотрофный образ жизни). Вода, минеральные соли и в некоторых случаях органика поступают путем всасывания. Растения поставляю органику для других царств живого и вырабатывают живительный кислород (последняя роль в известной мере выполняется также прокариотами – цманобактериями).

· Царство животные (Animalia ).Многоклеточные организмы, питающиеся готовыми органи­ческими соединениями (ведут гетеротрофный образ жизни), которые они приобретают посредством активного питания и передвижения, причем преимущественным объектом питания служат живые организмы. В рамках данной книги особый интерес представляют организмы с ярко выраженной социальностью – способностью формировать сложные надорганизменные системы с разделением функций, координацией поведения особей в масштабе всей системы. Таковы колониальные кишечнополостные, чьи колонии порой напоминают единый организм (сифонофоры), насекомые типа термитов, пчел или муравьев, чья социальная жизнь издавна вызывала восхищение у мыслителей и навевала аналогии с человеческим социумом (например, отраженную в басне XVIII века «О пчёлах», принадлежащей перу Мандевилля) и, наконец, хордовые, особенно млекопитающие.

«Командные посты» в биосфере Земли занимают представители типа хордовых: рыбы, земноводные, пресмыкающиеся, птицы и млекопитающие во главе с человеком. Для них характерны следующие признаки:

· Хорда (спинная струна) – ось внутреннего скелета, упругий гибкий стержень.У высших хордовых имеется лишь на ранних стадиях развития зародыша, вытесняясь затем позвоночником.

· Центральная нервная система (спинной и головной мозг) имеет трубчатое строение и образуется как впячивание спинной стороны зародыша.

· У всех хордовых, по крайней мере на стадии зародыша, имеются жаберные щели – парные поперечные отверстия, прободающие стенку глотки.

Самый высокоорганизованный класс хордовых – млекопитающие (звери). Они имеют постоянную высокую температуру тела, высокоразвитую нервную систему. В первую очередь головной мозг. Рождают детенышей, которые развиваются в теле матери, получая питание через плаценту, а после рождения вскармливаются молоком» (Медников, 1994).

3.3.2. Разнообразие внутри одной таксономической группы живых существ , в частности внутри одного вида (скажем, разнообразие внутри вида кошка домашняя). Это разнообразие, в свою очередь, включает в себя ряд важных аспектов. Так, можно говорить о разнообразии группировок особей внутри одного и того же вида живого. Например, все обезьяны шимпанзе относятся к одному виду, но наблюдаются различия в поведении и языках общения, а также ритуалах у разных групп шимпанзе. Приматолог де Вал отмечает, что только в одной из изученных им групп шимпанзе обезьяны приветствовали друзей, поднимая над головой руки и пожимая их. Не менее важно разнообразие и внутри одной такой группы - будь то прайд львов или колония микроорганизмов.

Во-первых, особи различаются по возрастам (“возрастная пирамида”), а во многих случаях по половым характеристикам. Даже у бактерий могут быть два типа особей - F+ и F- клетки (у кишечной палочки, населяющей кишечник человека).

Во-вторых, имеются бесчисленные индивидуальные вариации. Биополитики обращают внимание на то, что и у человека в семьях велики индивидуальные различия, например, между братьями. И в человеческом обществе, и в группах любого другого вида живого такое разнообразие представляет результат сложного взаимодействия врожденных (генетических) характеристик и влияния различий в условиях жизни (факторов окружающей среды). Отметим, что даже в одной семье у человека в разных условиях живут старшие и младшие братья, любимые и нелюбимые дети.

На все эти индивидуальные отличия налагаются еще различия, диктуемые распределением ролей и функций во всей группе, семье, колонии, вообще биосоциальной системе. И тогда оказывается, что для разных социальных ролей лучше подходят особи с различными задатками, а также разные роли могут быть распределены по возрастам и полам индивидов. Например, при всем своем “эгалитаризме” (равенстве по богатству, авторитету, рангу, см. ниже, 3.7) первобытное общество учитывало возрастные, половые и просто индивидуальные различия. Мужчины в основном охотились, женщины - собирали плоды, коренья, ягоды и в большей мере участвовали в воспитании детей; люди преклонного возраста преимущественно становились старейшинами, шаманами, в то же время вождь во время войны чаще был молодым человеком. Люди с индивидуальными талантами могли их развивать - художественные дарования делать наскальные рисунки, искусные танцоры и рассказчики веселить соплеменников своими плясками и повествованиями, соответ­ственно.

Поэтому биоразнообразие во всех своих гранях поистине является необходимой предпосылкой оптимального, гармоничного функционирования целого анасамбля живого - биосферы. Организмы с различными характеристиками и требованиями к среде обитания, вступающие в разнообразные отношения друг с другом, могут быть функционально специализированны в рамках "тела биоса". Каждый из биологических видов может представлять собой жизненно важный орган этого "тела". Есть многочисленные примеры отрицательных глобальных последствий уничтожения одного только биологического вида.

3.3.3. Уровни организации живых организмов. Одним из важных аспектов биоразнообразия служит многоуровневость живых объектов. Читателю рекомендуем вернуться на мгновение в конец раздела 2.1 выше, где мы коснулись вопроса о многоуровневости (многослойности) мира в целом. В рамках приведенной нами схемы Н. Гартмана живое соответствует «органическому» слою (хотя и не исчерпывается им, проявляя элементы «душевного» и даже «духовного» -- на чем собственно и зиждется возможность сопоставительного биополитического подхода к человеку и другим формам живого). Но, даже оставаясь в рамках органического слоя (уровня), мы можем выделить в нем несколько уровней второго порядка – их Гартман (Hartmann, 1940) называл «ступенями бытия» (Seinsstufen). Эти «ступени бытия» – уровни внутри биологического – служат критерием различения живых объектов. Многоклеточный организм (растение, животное, гриб) отличается от одноклеточного, ибо имеет внутри себя дополнительные уровни организации (тканевый, организменный – чуть ниже мы приведём наш вариант шкалы этих уровней).

Любой единичный биологический объект (клетка бактерии, цветущее растение, обезьяна бонобо и др.) представляет собой сложно организованную систему, состоящую хотя бы из нескольких уровней, из числе приведённых ниже. Ситуация несколько напоминает русскую матрёшку, в которой находятся более маленькие матрёшки. Разные авторы, кроме упомянутого критерия «части и целого», вводят различные другие критерии вычленения уровней (размер, сложность организации и др.), предпочитают выделять разные уровни в качестве главных. Были предложены разнообразные конкретные схемы уровней живого, где выделяется от 4 до 8 (например, см. Кремянский, 1969; Сетров, 1971; Miller, 1978; Miller, Miller, 1993) уровней. Ниже мы приводим свою схему, как бы представляющую общий знаменатель взглядов различных авторов:

1. Молекулярный (молекулярно-биологический). Молекулы, которые служат строительными блоками биосистем (роль белков, полисахаридов и других крупных органических молкул – биополимеров), носителями наследственной информации (нуклеиновые кислоты – ДНК и РНК), сигналами для коммуникации (часто малые органические молекулы), формами запасания энергии (в первую очередь АТФ) и др.

2. Субклеточный (внутриклеточный). Сложенные из молекул микроструктуры (мембраны, органеллы и др.), входящие в состав живой клетки.

3. Клеточный. Уровень имеет особое значение, так как клетка (в отличие от отдельной молекулы или органеллы) есть элементарная единица жизни. Многие особи всю жизнь существуют в виде одной клетки – одноклеточные. У многоклеточных клетки не расходятся, а образуют единый организм. Например, человеческий организм состоит примерно из 10 15 клеток.

4. Органно-тканевый уровень. Принцип «матрешки» работает и дальше. У многоклеточных существ однотипные клетки формируют ткани, из которых состоят органы растений (лист, стебель и др.) и животных (сердце, печень и др.).

5. Организменный уровень. Целое живое существо (заметим, что у одноклеточных форм жизни, например, простейших, бактерий, понятия клеточный и организменный уровни тождественны друг другу). В рамках этого уровня рассматриваются не только специфические структуры и функции того или иного живого организма, но и поведение биологических индивидов, гамма их взаимоотношений между собой, что ведет к формированию надорганизменных (биосоциальных) систем. Здесь мы видим переход к еще более высоким – надорганизменным – уровням организации

6. Популяционный уровень. Уровень группировок особей одного вида (популяций).

7. Экосистемный (биоценотически-биогеоценотический) уровень. Уровень сообществ многих видов организмов, формирующих единую локальную систему (биоценоз), причем часто в рассмотрение включаются также окружающая организмы среда (ландшафт и др.); в этом случае вся система называвется экосистемой (биогеоценозом).

8. Биосферный уровень. Соответствует всей совокупности живых организмов планеты, рассмотренной как целостная система (биосфера, биос в терминологии Агни Влавианос-Арванитис).

Это общий очерк уровней живого, классификация которых значительно различается у разных исследователей, которые привносят в уровневые классификации свои специфические интересы. Более того, новые научные открытия время от времени вводят в обиход новые, ранее не признававщиеся уровни. Пример: исследования лабораторий В.Л. Воейкова и Л.В. Белоусова на биологическом факультете МГУ, вслед за более ранними работами Н.Г. Гурвича позволили предположить наличие еще одного уровня биоса (между молекулярно-биологическим и субклеточным) – уровня молекулярных ансамблей. Подобные ансамбли (например, молекула ДНК) уже обладают многими “живыми” свойствами, такими как память, активность, целостность (когерентность).

В предлагаемой ниже таблице обозначены важнейшие характеристики уровней организации живого и их социальные приложения. В принципе каждый из основных уровней организации биосистем имеет биополитически важные аспекты. Каждый уровень допускает достаточно плодотворные аналогии и экстраполяции, дающие пищу для ума для исследователей человеческого социума с его политическими системами.

Таблица. Уровни организации живого и их биополитическое значение

Уровни организации Биополитически важные аспекты
Молекулярно-биологический Биополимеры (нуклеиновые кислоты, белки и др.). Молекулярная генетика. Генетика поведения человека. Психогенетика. Генное разнообразие человечества. Расы. Генетические технологии
Клеточный, органно-тканевый (внутриорганизменный) Регуляторные факторы. Межклеточная коммуникация. Нейромедиаторы. Гормоны. Функционирование нервной системы и ее блоков (модулей). Нейрофизиология психики и поведения.
Организменный, популяционный (биосоциальный) Поведение вообще. Социальное поведение и его политические аспекты. Биосоциальные системы. Иерархические и горизонтальные (сетевые) структуры. Политическая система с биосоциальной (биополитической) точки зрения.
Экосистемный, биосферный Разнообразие экосистем. Охрана био-окружения как задача биополитики. Экологический мониторинг. Экосистемы внутри человеческого организма (микробиота) и их роль в поддержании соматического, психического и социального здоровья людей.

На молекулярно-биологическом уровне биополитический интерес представляют так называемые шапероны (от англ. chaperon – пожилая дама, сопровождающая молодую девушку) – белковые молекулы, которые обеспечивают функционально правильную укладку других молекул (например, ферментов). Представляется, что самоорганизующиеся политические движения современности, в том числе всякого рода сетевые структуры (см. о них 5.7 ниже) должны находиться под влиянием некоторых помогающих организаций-«шаперонов», которые направляли бы их деятельность в разумное русло. Создание аналогичных «шаперонов» на уровне целого государства, которые бы направляли демократический процесс по наиболее конструктивному руслу, не отнимая у участников этого процесса простор для деятельности, а только создавая им оптимальные условия, в том числе и в плане жизненных потребностей людей (осуществляя «биополитику» в понимании М. Фуко) – вот, по мысли автора данной книги, «рациональное зерно» политического термина управляемая демократия.

На клеточном уровне несомненную ценность представляет предложенное Р. Вирховым в XIX в. (см. 1.1) сравнение тканей в составе многоклеточного организма с «клеточными государствами», а закономерностей роста и деления клеток – с социальными нормами поведения граждан в государстве. Сравнение целого организма с политической системой – базисная аналогия для организмического подхода в социологии и политологии (см. Франчук, 2005а, б).

Однако наибольшее значение для биополитики имеет сопоставление биосистем на их популяционном уровне с объектами политологии. Взаимодействие индивидов в составе биосоциальных систем в сопоставлении с политическими системами человеческого общества будет основной темой четвертой и пятой глав настоящей книги.

Интерес представляют, впрочем, и еще более высокие уровни организации биосистем. Например, представляя генетически единый биологический вид, человечество тем не менее состоит из различных культур (с разными нормами поведения). С известным правом человечество в культурном плане можно рассматривать как аналог многовидовой ассоциации (биоценоза).

3.3.4. Диатропический подход к живому. В ХХ веке разнообразие живого служило предметом диатропического подхода к нему (С.В. Мейен, Ю.В. Чайковский, С.В. Чебанов). «Диатропика (от греч. diatrόpoV – разнообразный, разнохарактерный) – наука о разнообразии, т.е. о тех общих свойствах сходства и различия, которые обнаруживаются в больших совокупностях объектов» (Чайковский, 1990. С.3). Диатропический подход нацелен на построение типологии всего рассматриваемого класса объектов (например, всех кошек, всех растений, всех политических систем) с составлением полного кадастра многообразия форм индивидуальных объектов (таксонов) и также многообразия составляющих их частей (меронов), к примеру, передних конечностей млекопитающих или вариантов кабинетов министров в политических системах. Полный кадастр части тела (мерона) «конечность» у млекопитающих включает в себя варианты «лапа» (наиболее распространенный), «ласт» (у нерп, моржей), «плавник» (у китообразных).

На базе кадастра меронов создаются “обобщенные образы” (архетипы), тех или иных форм живого или их групп. Например, создать обобщенный портрет кошки означает выяснить, какие варианты сочетаний частей (меронов) делают животное кошкой, например упомянутый мерон «передняя конечность» может быть лишь «лапой», никак не «ластом» или «плавником», он не может также отсутствовать (за вычетом уродств или прижизненных травм). Более детально – лапа должна быть когтистой, подушечки должны быть определенных цветов, причем при заданном цвете подушечек лап (скажем, розовом) другие мероны должны также иметь совместимые характеристики (живот у кошки с розовыми подушечками должен непременно быть белым), если мы хотим, чтобы сочетание меронов реально встречалось среди кошачьего племени.

Диатропический подход исследует также вопрос о роли многообразия (разнокачественности, гетерогенности) элементов для выполнения функций той системы, которую они слагают. Приведем здесь пример, относящийся к человеческому обществу. Многие государства состоят из представителей различных этнических групп. Как это соотносится с разнообразием социальных функций, в частности, профессий? Благоприятствует ли разнообразие этнических особенностей более полному насыщению всех формируемых в обществе профессиональных вакансий?

В связи с диатропическим подходом к биосистемам остановимся на реализуемом на разных уровнях живого законе необходимого разнообразия(Реймерс, 1992). Устойчивое функционирование надорганизменных систем, также как и просто многоклеточного организма как «коллектива клеток» предполагает, что элементы не полностью одинаковы, а различаются между собой, что служит предпосылкой их специализации по функциям.

В биосистемах этот закон дополняется законом избыточности системных элементов, когда каждая функция в системе выполняется не одним, а сразу многими ее элементами. Биосистемы функционируют надежнее благодаря этому закону (функции иммунной защиты реализуются в организме человека и миндалинами, и тимусом, и аппендиксом, и лимфоузлами, и селезенкой): выбывший из строя элемент системы замещается другими, выполняющими ту же функцию. Однако, наряду с избыточностью и дублированием функций многими звеньями системы в развитии биосистем прослеживается и другая теденция – уменьшения числа однородных блоков с идентичной функцией. Ранее однородные элементы в этом случае дифференцируются по «профессиям», что дает возможность выполнять большее число функций в рамках всей системы. Надежность всей системы в этом случае сохраняется за счет повышения качества каждого отдельно взятого элемента. У кольчатых червей (например, земляного червя или пиявки) тело сложено из многих однородных, повторяющихся звеньев – сегментов. В ходе эволюции кольчатые черви дали начало членистоногим (насекомым, паукообразным, ракообразным), у которых сегменты тела уже не однородны, а специализированы по функциям.

Введение

Экологией в настоящее время принято называть науку о «собственном доме» человека -- биосфере, ее особенностях, взаимодействии и взаимосвязи с человеком, а человека -- со всем человеческим обществом. Экология является не только интегрированной дисциплиной, где оказываются связанными физические и биологические явления, она образует своеобразный мост между естественными и общественными науками.

Основной целью выполнения контрольной работы является изучение предмета экология.

Для этого необходимо:

  • - раскрыть понятие биосистемы Земли и ступени ее развития, раскрыть организованность биосистем и их свойства;
  • - рассмотреть характеристики видов, относящихся к r-модели популяционной динамики;
  • - дать определение загрязнения окружающей среды, раскрыть основные виды и типы загрязнения, их источники и степень влияния на окружающую среду;
  • - изучить санитарно-гигиеническое нормирование окружающей среды, раскрыть основные принципы санитарно-гигиенического нормирования, а так же недостатки системы санитарно-гигиенического нормирования.

Биосистемы Земли, ступени иерархии биосистем

Биосистемы - это биологические системы, в которых биотические компоненты разных уровней организации упорядоченно взаимодействуют с окружающей физической средой, т.е. с абиотическими компонентами (энергией и веществом), составляя единое целое. Основных уровней семь:- молекулярный;- клеточный;- тканевый;- организменный;- популяционно-видовой; биогеоценотический;- биосферный. Иерархическая организованность биосистем иллюстрирует непрерывность и дискретность эволюции жизни. Развитие - процесс непрерывный, но и дискретный, поскольку изменения проходят через ряд отдельных уровней организации. Деление иерархии на ступени условно, т.к. каждый уровень интегрирован, т.е. связан с соседними уровнями в функциональном смысле. Например, гены не могут функционировать в природе вне клетки, клетки многоклеточных - вне органов, органы - вне организма и т. д. Сообщество не может существовать, если в нем не происходит круговорот веществ и не поступает энергия извне. Экосистема не жизнеспособна без взаимосвязи с популяционными системами и биосферой в целом. По тем же причинам человеческая цивилизация не может существовать вне мира природы. Биосистемы разных уровней являются предметом изучения различных дисциплин. Системы, которые расположены выше уровня организмов, т.е. популяционные системы, экосистемы и биосферу, изучает экология.

Самое важное следствие иерархической организации живой природы состоит в том, что по мере объединения подсистем в более крупные функциональные единицы у этих новых систем возникают уникальные свойства, которых не было на предыдущем уровне. В экологии эти качественно новые свойства называют эмерджентными (англ. Неожиданно появляющиеся). Их нельзя предсказать на основании свойств подсистем низшего порядка, составляющих систему более высокого уровня организации. Таким образом, суть принципа эмерджентности заключается в том, что биологические системы обладают свойствами, которые нельзя свести к сумме свойств составляющих их подсистем.

В экологии организм рассматривается как целостная система, взаимодействующая с внешней средой, как абиотической, так и биотической. В этом случае в наше поле зрения попадает такая совокупность, как биологический вид, состоящий из исходных особей, которые, тем не менее, как индивидуумы отличаются друг от друга. Но всех их объединяет единый для всех генофонд, обеспечивающий их способность к размножению в пределах вида. Поскольку каждый отдельный индивид имеет свои специфические особенности, то и отношение их к состоянию среды, к воздействию ее факторов различное. Например, повышение температуры часть особей может не выдержать и погибнуть, но популяция всего вида выживает за счет других, более приспособленных.

Популяция - сложная генетическая система. Для каждой популяции характерны определенная численность особей, соотношение самцов, самок и особей разных возрастных групп (новорожденных, молодых, взрослых, старых), частота вариаций разных признаков. Например, в северных популяциях одного вида - прыткой ящерицы все самцы коричневые, в южных - зеленые, а в средней полосе можно встретить в одной популяции и коричневых и зеленых. Сотни и тысячи поколений - обычное время существования отдельных популяций. Иногда возникают мелкие группы особей, которые существуют 2-3 поколения, но это не настоящие популяции. Ни отдельная особь, ни даже мелкая группа особей вроде семьи не может существовать в процессе эволюции долго. Популяция - минимальная группа особей, обладающая собственной эволюционной судьбой. Для любой популяции характерны колебания численности составляющих ее особей. Причин этому множество: обилие или недостаток пищи, изменение климата, враги и др.

Биоценоз представляет собой - совокупность растений, животных, грибов и микроорганизмов, совместно населяющих участок земной поверхности и характеризующихся определенными отношениями как друг с другом, так и с совокупностью абиотических факторов. Составными частями биоценоза являются фитоценоз (совокупность растений), зооценоз (совокупность животных), микоценоз (совокупность грибов) и микробоценоз (совокупность микpoopганизмов). Синоним биоценоза - сообщество.

Участок земной поверхности (суши или водоема) с однотипными абиотическими условиями (рельефом, климатом, почвами, характером увлажнения и др.), занимаемый тем или иным биоценозом, называется биотопом (от греч. topos - место). В пространственном отношении биотоп соответствует биоценозу. Биотоп, с которым связаны обитающие здесь организмы и условия их существования, подвергается изменениям со стороны биоценоза. Однородность климатических условий биоценоза определяет климатоп, почвенно-грунтовых - эдафотоп, увлажнения - гидротоп.

Биотоп и биоценоз являются составными частями экосистемы - природного комплекса, образованного живыми организмами (биоценозом) и средой их обитания (биотопом), которые связаны между собой обменом веществ и энергией. Экосистема не имеет строгой таксономической определенности, и ею могут быть объекты разной сложности и размерности - от кочки до материка, от небольшого водоема до Мирового океана. Вместе с тем экосистема - основная функциональная и структурная природная система биосферы, так как ее составляют взаимозависимые организмы и абиотическая среда, поддерживающие жизнь в той форме, в какой она существует на Земле. Каждый биоценоз есть система, включающая множество экологически и биологически различных видов, которые возникли в результате отбора и способны существовать совместно в конкретных природных условиях. Видовой состав биоценоза представляет собой систематизированную совокупность видов растений, животных, грибов и микроорганизмов, свойственных данному биоценозу. Видовой состав фитоценоза более или менее постоянен по сравнению с зооценозом, так как животные перемещаются. Учет грибов и микроорганизмов из-за чрезмерного видового обилия или их микроскопических размеров затруднен. Наибольшим видовым разнообразием отличаются биоценозы влажных тропических лесов, наименьшим - полярных ледяных пустынь.

Среди наземных биоценозов в этом плане богаты цветковые растения, несколько меньше видовая насыщенность грибов, насекомых, еще меньше - птиц, млекопитающих и других представителей фауны. В тундре наибольшее видовое разнообразие у мхов и лишайников. Чем большую территорию занимает биоценоз и чем благоприятнее экологические условия, тем больше видовой - состав. При большом видовом составе речь идет о флористическом и фаунистическом богатстве. Виды, преобладающие в биоценозе, называются доминантами. Различают постоянные и временные доминанты. Последние господствуют лишь на протяжении небольшого периода вегетации, сменяясь другими, также временными доминантами. Причем доминанты верхнего яруса имеют большее экологическое значение, чем нижних. В ярусе может находиться другой вид, имеющий важное, но меньшее, чем доминанта, значение,- субдоминанта. Так, в сосняке березово-черничном субдоминантой является береза, если она вместе с сосной образует древесный ярус. Второстепенные виды (ассектаторы) входят в состав различных ярусов. В биоценозе можно встретить и растения-антропофиты, проникшие в фитоценоз в результате сознательного или случайного заноса их человеком. Доминанты, определяющие характер и строй биоценоза, называются эдификаторами (строителями). В основном это те растения, которые создают внутреннюю биотическую среду сообщества: в сосновом лесу - сосна, дубраве - дуб, ковыльной степи - ковыль и т.д.. Субэдификаторами являются, как правило, субдоминанты.

Биоценоз характеризуется вертикальной и горизонтальной структурой. Вертикальное строение биоценоза находит отражение в ярусности - вертикальном расчленении сообщества организмов на достаточно, четко ограниченны горизонты деятельности. Ярусность в первом приближении связана со средой обитания организмов. Так, можно выделить виды, обитающие в воздушной среде, гидросфере, литосфере, почвенной среде и на границе сред. В данном случае ярусность есть проявление вертикального расчленения биосферы на ее структурные сферы. Подземная ярусность биоценоза отражает вертикальное распределение корневых систем растений фитоценоза. Наличие подземной ярусности фитоценоза обеспечивает наиболее продуктивное использование почвенной влаги: в одном и том же местообитании растут растения различных гигроэкологических групп - от ксерофитов до гигрофитов. Ярусность фитоценоза имеет большое экологическое значение. Она - результат длительного и сложного процесса межвидовой конкуренции и взаимного приспособления растений друг к другу. Благодаря ей фитоценоз образует виды, весьма различные по своей экологии и имеющие различные жизненные формы (дерево, кустарник, трава, мох и т. д.). Горизонтальная структура биоценоза отражена в синузиях (от греч. synusia - совместное пребывание, сообщество) - пространственно и экологически отграниченных друг от друга частях фитоценоза, состоящих из видов растений одной или нескольких экологически близких жизненных форм. Если ярус - морфологическое понятие, то синузия - экологическое. Она может совпадать с ярусом и может составлять только часть его. Расчленение древесного яруса на синузии можно наблюдать, если осенью подняться высоко над лесным массивом: темнохвойные ели и светло-хвойные сосны сменяются пожелтевшими березами, красноватыми осинами и побуревшими дубами. Кроме того, в синузиях отражена мозаика экологических факторов формирования растительного сообщества: сосна оккупировала сухие песчаные почвы, ель - более влажные супесчаные и суглинистые, береза и осина - вырубки, а дуб - наиболее плодородные почвы.

Они могут быть постоянными (сессильными) и временными (вагильными).

В целом сообществу присуща суточная, сезонная (годичная) и многолетняя динамика, свойственная как растениям, так и животным. Суточная, вызываемая сменой светлой и темной части суток, у растений проявляется в интенсивности фотосинтеза, дыхания, раскрывании и закрывании цветков, у животных -- в разной суточной активности (дневные, сумеречные и ночные).

Сезонная динамика биоценоза зависит от фенологического состояния фитоценоза, видового состава и численности обитающих в нем животных. Каждый вид растительных организмов в течение вегетационного периода проходит определенные стадии развития (начало вегетации, цветение, плодоношение и отмирание). В фитоценозе, состоящем из множества видов, фазы развития растений могут совпадать и не совпадать.

Сезонная динамика животных представителей биоценоза связана с их размножением, жизненной активностью и миграциями. Весенний прилет и осенний отлет птиц, нерест рыб, появление молодняка, активность насекомых-опылителей на лугах, зимняя спячка медведя только ничтожно малая часть примеров сезонной динамики животного населения биоценоза.

От животных -детритофагов редуценты отличаются прежде всего тем, что не оставляют твёрдых непереваренных остатков (экскрементов). Редуценты возвращают минеральные соли в почву и воду, делая их доступными для продуцентов - автотрофов, и таким образом замыкают биотический круговорот. Поэтому экосистемы не могут обходиться без редуцентов (в отличие от консументов, которые, вероятно, отсутствовали в экосистемах в течение первых 2 млрд лет эволюции, когда экосистемы состояли из одних прокариот).

Окружающий мир включается в себя совокупность природных и антропогенных объектов, которые сосуществуют на протяжении всей человеческой истории. Но равновесие в природе нарушить очень легко. И в первую очередь от этого страдают различные биосистемы. Что же имеется ввиду под этим понятием? Биосистема представляет из себя совокупность всех живых организмов в целом. Но рассматривать ее в таком разрезе крайне тяжело, поэтому биосистему принято разделять на различные уровни организации живой материи. Основных уровней семь:- молекулярный;- клеточный;- тканевый;- организменный;- популяционно-видовой;- биогеоценотический;- биосферный.Эти уровни включаются друг в друга, образуя единство живой природы в целом. На молекулярном уровне описываются молекулярные процессы, происходящие в живых клетках, а также и сами молекулы с точки зрения их включения в состав клетки. Молекулы могут образовать различные химические и органические соединения для обеспечения жизнедеятельности клеток. Исследованиями биосферы на этом уровне занимаются такие науки, как биофизика, биохимия, молекулярная генетика и молекулярная биология. Клеточный уровень включает в себя простейшие одноклеточные организмы, а также совокупности различных клеток, являющихся частями многоклеточных организмов. Это уровень является предметом изучения таких наук, как эмбриология, цитология, генная инженерия. В их рамках ведется изучение процессов биосинтеза и фотосинтеза, деления клеток, участия различных химических элементов и Солнца на существование биосистемы. Тканевый уровень представляет из себя определенные ткани, которые объединяют в себе схожие по строению и функциям клетки. С развитием многоклеточного организма происходит естественная дифференциация клеток по выполняемым ими ролям. Все животные обладают мышечной, эпителиальной, соединительной, нервной и т.д тканями.На организменном уровне сосуществуют различные многоклеточные растения, животные, грибы, а также различные микроорганизмы (в том числе и одноклеточные) с точки зрения их влияния на многоклеточные существа. Изучением этого уровня биосистемы занимаются анатомия, аутэкология, генетика, гигиена, физиология, морфология, а также ряд других наук. На популяционно-видовом уровне биосистемы учеными изучаются процессы, протекающие в популяциях и видах различных живых существ, объединенных между собой генофондом и способом воздействия на окружающую среду. Помимо этого, на данном уровне рассматриваются проблемы взаимодействия различных видов и популяций. Биогеоценозный компонент биосистемы образован различными видами и популяциями живых существ на Земле. На этом уровне изучаются различные особенности и специфика распределения живых существ по различным территориям. При этом учитывается построение пищевых сетей. Науками, изучающими данный уровень, являются биогеография и экология.Самый главный и обширный уровень организации жизни - это биосферный, где изучаются многочисленные связи между человеком и биогеоценозным уровнем. Изучением данного уровня вместе с антропогенным воздействием занимается экология.

Биосистема - это сложная сеть биологически соответствующих организаций, от глобальных до субатомных. иллюстрация отражает множественные гнездовые системы в природе - популяции организмов, органы и ткани. В микро- и наноскопическом масштабе примерами биологических систем являются клетки, органеллы, макромолекулярные комплексы и регуляторные пути.

Организм как биосистема

В биологии организм является любой смежной живой системой наряду с животными, растениями, грибами, протистами или бактериями. Все известные типы существ на Земле способны в некоторой степени реагировать на стимулы, размножаться, расти, развиваться и саморегулироваться (гомеостаз).

Организм как биосистема состоит из одной или нескольких клеток. Большинство одноклеточных организмов имеет микроскопический масштаб и, следовательно, относятся к микроорганизмам. Люди - это состоящие из многих триллионов клеток, сгруппированных в специализированные ткани и органы.

Множество и разнообразие биологических систем

Оценки количества современных видов Земли колеблются от 10 до 14 миллионов, из которых только около 1,2 миллиона были официально задокументированы.

Термин «организм» напрямую связан с термином «организация». Можно дать следующее определение: это сборка молекул, функционирующих как более или менее устойчивое целое, которое проявляет свойства жизни. Организм как биосистема - это любая живая структура, такая как растение, животное, гриб или бактерии, которая способна расти и размножаться. Из этой категории исключаются вирусы и возможные антропогенные неорганические формы жизни, поскольку они зависят от биохимического механизма клетки-хозяина.

Тело человека как биосистема

Человеческий организм также можно назвать биосистемой. Это совокупность всех органов. Наши тела состоят из ряда биологических систем, которые выполняют конкретные функции, необходимые для повседневной жизни.

  • Работа системы кровообращения заключается в перемещении крови, питательных веществ, кислорода, углекислого газа и гормонов по органам и тканям. Она состоит из сердца, крови, кровеносных сосудов, артерий и вен.
  • Пищеварительная система состоит из ряда соединенных органов, которые вместе позволяют организму поглощать и переваривать пищу, а также занимается удалением отходов. Она включает в себя рот, пищевод, желудок, тонкую кишку, толстую кишку, прямую кишку и анус. Печень и поджелудочная железа также играют важную роль в пищеварительной системе, потому что они производят пищеварительные соки.
  • Эндокринная система состоит из восьми основных желез, которые выделяют гормоны в кровь. Эти гормоны, в свою очередь, путешествуют по разным тканям и регулируют различные функции организма.
  • Иммунная система является защитой организма от бактерий, вирусов и других вредных патогенов. Она включает лимфатические узлы, селезенку, костный мозг, лимфоциты и лейкоциты.
  • Лимфатическая система включает в себя лимфатические узлы, протоки и сосуды, а также играет роль в качестве защитных сил организма. Ее основная задача - это образовать и перемещать лимфу, прозрачную жидкость, содержащую белые кровяные клетки, которые помогают организму бороться с инфекцией. Лимфатическая система также удаляет избыток лимфатической жидкости из телесных тканей и возвращает ее в кровь.
  • Нервная система контролирует как добровольные (например, сознательное движение), так и непроизвольные действия (например, дыхание), и посылает сигналы к различным частям тела. Центральная нервная система включает головной и спинной мозг. Периферическая нервная система состоит из нервов, которые соединяют каждую с центральной нервной системой.
  • Мышечная система тела состоит из около 650 мышц, которые помогают в движении, кровообращении и выполняют ряд других физических функций.

  • Репродуктивная система позволяет людям размножаться. Мужская включает пенис и семенники, которые производят сперму. Женская репродуктивная система состоит из влагалища, матки и яичников. Во время зачатия сперматозоиды сливаются с яйцеклеткой, которая создает оплодотворенное яйцо, что растет в матке.
  • Наши тела поддерживаются скелетной системой, состоящей из 206 костей, которые связаны сухожилиями, связкями и хрящами. Скелет не только помогает нам двигаться, но также участвует в производстве клеток крови и хранении кальция. Зубы также являются частью скелетной системы, но они не считаются костями.
  • Дыхательная система позволяет принимать жизненно важный кислород и удалять углекислый газ в процессе, который мы называем дыханием. Она состоит в основном из трахеи, диафрагмы и легких.
  • Мочевая система помогает устранить ненужный продукт под названием мочевина из организма. Она состоит из двух почек, двух мочеточников, мочевого пузыря, двух мышц сфинктера и уретры. Моча, произведенная почками, перемещается вниз по мочеточникам в мочевой пузырь и выходит из организма через уретру.
  • Кожа является самым большим органом человеческого тела. Она защищает нас от внешнего мира, бактерий, вирусов и других патогенов, а также помогает регулировать температуру тела и устранять отходы через пот. В дополнение к коже, включает волосы и ногти.

Жизненно важные органы

У людей есть пять органов, которые необходимы для выживания. Это мозг, сердце, почки, печень и легкие.

  • Человеческий мозг является центром управления тела, приема и передачи сигналов в другие органы через нервную систему и через секретируемые гормоны. Он отвечает за наши мысли, чувства, память и общее восприятие мира.
  • Человеческое сердце является ответственным за перекачку крови по всему нашему телу.
  • Работа почек заключается в удалении отходов и дополнительной жидкости из крови.
  • Печень имеет множество функций, в том числе детоксикация вредных химических веществ, распад лекарственных средств, фильтрация крови, секреция желчи и производство белков для свертывания крови.
  • Легкие отвечают за удаление кислорода из воздуха, которым мы дышим и перенос его в нашу кровь, где он может быть направлен в наши клетки. Легкие также удаляют углекислый газ, который мы выдыхаем.

Забавные факты

  • В человеческом теле содержится около 100 триллионов клеток.
  • Средний взрослый совершает более 20 000 вдохов в день.
  • Каждый день почки обрабатывают около 200 квартов (50 галлонов) крови, чтобы отфильтровать около 2 кварт отходов и воды.
  • Взрослые люди выделяют около четверти с половиной (1,42 литра) мочи каждый день.
  • Человеческий мозг содержит около 100 миллиардов нервных клеток.
  • Вода составляет более 50 процентов от веса тела взрослого человека.

Почему организм называют биосистемой?

Живой организм является определенной организацией живой материи. Он является биосистемой, которая, как и любая другая система, включает в себя взаимосвязанные между собой элементы, например молекулы, клетки, ткани, органы. Все в этом мире из чего-то состоит, определенная иерархичность свойственна и живому организму. Это означает, что из молекул состоят клетки, из клеток - ткани, из тканей - органы, из органов - системы органов. Свойства биосистем также включают эмерджентность, что означает появление качественно новых характеристик, присутствующих при объединении элементов и отсутствующих на предыдущих уровнях.

Клетка как биосистема

Одну единственную клетку также можно назвать полноценной биосистемой. Это элементарная единица, имеющая свое строение и собственный обмен веществ. Она способна существовать самостоятельно, воспроизводить себе подобных и развиваться по собственным законам. В биологии есть целый раздел, посвященный ее изучению, который называется цитологией или клеточной биологией.

Клетка - это элементарная живая система, включающая в себя отдельные компоненты, которые имеют специфические особенности и выполняют свои функциональные обязанности.

Сложная система

Биосистема состоит из однотипного живого вещества: от макромолекул и клеток до популяционных сообществ и экосистем. В ней существуют следующие уровни организации:

  • генный уровень;
  • клеточный уровень;
  • органы и системы органов;
  • организмы и системы организмов;
  • популяции и популяционные системы;
  • сообщества и экосистемы.

Биологическое составляющие различных уровней организации в определенном порядке вступают во взаимодействие с неживой природой, энергией и другими абиотическими компонентами и веществами. В зависимости от масштаба, разные системы являются предметами изучения разных дисциплин. Генами занимается генетика, клетки рассматривает цитология. Органы берет на себя физиология. Организмы изучает ихтиология, микробиология, орнитология, антропология и так далее.

В целом. Но рассматривать ее в таком разрезе крайне тяжело, поэтому биосистему принято разделять на различные уровни организации живой материи. Основных уровней семь:- молекулярный;- клеточный;- тканевый;- организменный;- популяционно-видовой;- биогеоценотический;- биосферный.Эти уровни включаются друг в друга, образуя единство живой природы в целом. На уровне описываются молекулярные процессы, происходящие в живых клетках, а также и сами молекулы с точки зрения их включения в состав клетки. Молекулы могут образовать различные химические и органические соединения для обеспечения жизнедеятельности клеток. Исследованиями биосферы на этом уровне занимаются такие науки, как биофизика, биохимия, молекулярная и молекулярная . Клеточный уровень включает в себя простейшие одноклеточные организмы, а также совокупности различных клеток, являющихся частями многоклеточных организмов. Это уровень является предметом изучения таких наук, как эмбриология, цитология, генная инженерия. В их рамках ведется изучение процессов биосинтеза и фотосинтеза, деления клеток, участия различных химических элементов и Солнца на существование биосистемы. Тканевый уровень представляет из себя определенные ткани, которые объединяют в себе схожие по строению и функциям клетки. С развитием многоклеточного организма происходит естественная дифференциация клеток по выполняемым ими ролям. Все обладают мышечной, эпителиальной, соединительной, нервной и т.д тканями.На организменном уровне сосуществуют различные многоклеточные растения, животные, грибы, а также различные микроорганизмы (в том числе и одноклеточные) с точки зрения их влияния на многоклеточные существа. Изучением этого уровня биосистемы занимаются анатомия, аутэкология, генетика, гигиена, физиология, морфология, а также ряд других наук. На популяционно-видовом уровне биосистемы учеными изучаются процессы, протекающие в популяциях и видах различных живых существ, объединенных между собой генофондом и способом воздействия на окружающую среду. Помимо этого, на данном уровне рассматриваются проблемы взаимодействия различных видов и популяций. Биогеоценозный компонент биосистемы образован различными видами и популяциями живых существ на Земле. На этом уровне изучаются различные особенности и специфика распределения живых существ по различным территориям. При этом учитывается построение пищевых сетей. Науками, изучающими данный уровень, являются биогеография и экология.Самый главный и обширный уровень организации жизни - это биосферный, где изучаются многочисленные связи между человеком и биогеоценозным уровнем. Изучением данного уровня вместе с антропогенным воздействием занимается экология.