Опыт штерна. Опыт штерна - экспериментальное подтверждение теории. класс физика скорость движения молекул опыт штерна

Году. Опыт являлся одним из первых практических доказательств состоятельности молекулярно-кинетической теории строения вещества. В нём были непосредственно измерены скорости теплового движения молекул и подтверждено наличие распределения молекул газов по скоростям .

Для проведения опыта Штерном был подготовлен прибор, состоящий из двух цилиндров разного радиуса, ось которых совпадала и на ней располагалась платиновая проволока с нанесённым слоем серебра . В пространстве внутри цилиндров посредством непрерывной откачки воздуха поддерживалось достаточно низкое давление . При пропускании электрического тока через проволоку достигалась температура плавления серебра, из-за чего серебро начинало испаряться и атомы серебра летели к внутренней поверхности малого цилиндра равномерно и прямолинейно со скоростью v , определяемой температурой нагрева платиновой проволоки, т. е. температурой плавления серебра. Во внутреннем цилиндре была проделана узкая щель, через которую атомы могли беспрепятственно пролетать далее. Стенки цилиндров специально охлаждались, что способствовало оседанию попадающих на них атомов. В таком состоянии на внутренней поверхности большого цилиндра образовывалась достаточно чёткая узкая полоса серебряного налёта, расположенная прямо напротив щели малого цилиндра. Затем всю систему начинали вращать с некой достаточно большой угловой скоростью ω . При этом полоса налёта смещалась в сторону, противоположную направлению вращения, и теряла чёткость. Измерив смещение s наиболее тёмной части полосы от её положения, когда система покоилась, Штерн определил время полёта, через которое нашёл скорость движения молекул:

t=\frac{s}{u}=\frac{l}{v} \Rightarrow v=\frac{ul}{s}=\frac{\omega R_{big} (R_{big}-R_{small})}{s},

где s - смещение полосы, l - расстояние между цилиндрами, а u - скорость движения точек внешнего цилиндра.

Найденная таким образом скорость движения атомов серебра совпала со скоростью, рассчитанной по законам молекулярно-кинетической теории, а тот факт, что получившаяся полоска была размытой, свидетельствовал в пользу того, что скорости атомов различны и распределены по некоторому закону - закону распределения Максвелла : атомы, двигавшиеся быстрее, смещались относительно полосы, полученной в состоянии покоя, на меньшие расстояния, чем те, которые двигались медленнее.

Напишите отзыв о статье "Опыт Штерна"

Литература

  • Краткий словарь физических терминов / Сост. А. И. Болсун, рец. М. А. Ельяшевич. - Мн. : Вышэйшая школа, 1979. - С. 388. - 416 с. - 30 000 экз.

Ссылки

  • Ландсберг. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. - 12-е изд. - М .: ФИЗМАТЛИТ, 2001. - ISBN 5-9221-0135-8 .
  • Интернет-школа Просвещение.ру. (рус.) (недоступная ссылка - история ) . Проверено 5 апреля 2008.
  • Штерна опыт - статья из Большой советской энциклопедии .

Отрывок, характеризующий Опыт Штерна

Так он лежал и теперь на своей кровати, облокотив тяжелую, большую изуродованную голову на пухлую руку, и думал, открытым одним глазом присматриваясь к темноте.
С тех пор как Бенигсен, переписывавшийся с государем и имевший более всех силы в штабе, избегал его, Кутузов был спокойнее в том отношении, что его с войсками не заставят опять участвовать в бесполезных наступательных действиях. Урок Тарутинского сражения и кануна его, болезненно памятный Кутузову, тоже должен был подействовать, думал он.
«Они должны понять, что мы только можем проиграть, действуя наступательно. Терпение и время, вот мои воины богатыри!» – думал Кутузов. Он знал, что не надо срывать яблоко, пока оно зелено. Оно само упадет, когда будет зрело, а сорвешь зелено, испортишь яблоко и дерево, и сам оскомину набьешь. Он, как опытный охотник, знал, что зверь ранен, ранен так, как только могла ранить вся русская сила, но смертельно или нет, это был еще не разъясненный вопрос. Теперь, по присылкам Лористона и Бертелеми и по донесениям партизанов, Кутузов почти знал, что он ранен смертельно. Но нужны были еще доказательства, надо было ждать.
«Им хочется бежать посмотреть, как они его убили. Подождите, увидите. Все маневры, все наступления! – думал он. – К чему? Все отличиться. Точно что то веселое есть в том, чтобы драться. Они точно дети, от которых не добьешься толку, как было дело, оттого что все хотят доказать, как они умеют драться. Да не в том теперь дело.
И какие искусные маневры предлагают мне все эти! Им кажется, что, когда они выдумали две три случайности (он вспомнил об общем плане из Петербурга), они выдумали их все. А им всем нет числа!»
Неразрешенный вопрос о том, смертельна или не смертельна ли была рана, нанесенная в Бородине, уже целый месяц висел над головой Кутузова. С одной стороны, французы заняли Москву. С другой стороны, несомненно всем существом своим Кутузов чувствовал, что тот страшный удар, в котором он вместе со всеми русскими людьми напряг все свои силы, должен был быть смертелен. Но во всяком случае нужны были доказательства, и он ждал их уже месяц, и чем дальше проходило время, тем нетерпеливее он становился. Лежа на своей постели в свои бессонные ночи, он делал то самое, что делала эта молодежь генералов, то самое, за что он упрекал их. Он придумывал все возможные случайности, в которых выразится эта верная, уже свершившаяся погибель Наполеона. Он придумывал эти случайности так же, как и молодежь, но только с той разницей, что он ничего не основывал на этих предположениях и что он видел их не две и три, а тысячи. Чем дальше он думал, тем больше их представлялось. Он придумывал всякого рода движения наполеоновской армии, всей или частей ее – к Петербургу, на него, в обход его, придумывал (чего он больше всего боялся) и ту случайность, что Наполеон станет бороться против него его же оружием, что он останется в Москве, выжидая его. Кутузов придумывал даже движение наполеоновской армии назад на Медынь и Юхнов, но одного, чего он не мог предвидеть, это того, что совершилось, того безумного, судорожного метания войска Наполеона в продолжение первых одиннадцати дней его выступления из Москвы, – метания, которое сделало возможным то, о чем все таки не смел еще тогда думать Кутузов: совершенное истребление французов. Донесения Дорохова о дивизии Брусье, известия от партизанов о бедствиях армии Наполеона, слухи о сборах к выступлению из Москвы – все подтверждало предположение, что французская армия разбита и сбирается бежать; но это были только предположения, казавшиеся важными для молодежи, но не для Кутузова. Он с своей шестидесятилетней опытностью знал, какой вес надо приписывать слухам, знал, как способны люди, желающие чего нибудь, группировать все известия так, что они как будто подтверждают желаемое, и знал, как в этом случае охотно упускают все противоречащее. И чем больше желал этого Кутузов, тем меньше он позволял себе этому верить. Вопрос этот занимал все его душевные силы. Все остальное было для него только привычным исполнением жизни. Таким привычным исполнением и подчинением жизни были его разговоры с штабными, письма к m me Stael, которые он писал из Тарутина, чтение романов, раздачи наград, переписка с Петербургом и т. п. Но погибель французов, предвиденная им одним, было его душевное, единственное желание.

БРОУН Роберт (), английский ботаник Описал ядро растительной клетки и строение семяпочки. В 1828 опубликовал "Краткий отчет о наблюдениях в микроскоп...", в котором описал открытое им движение броуновских частиц. Описал ядро растительной клетки и строение семяпочки. В 1828 опубликовал "Краткий отчет о наблюдениях в микроскоп...", в котором описал открытое им движение броуновских частиц.


Броуновское движение - это тепловое движение взвешенных в жидкости или газе частиц год – наблюдал явление, рассматривая в микроскоп взвешенные в воде споры плауна. Броуновское движение никогда не прекращается, частицы движутся беспорядочно. Это тепловое движение.






ПЕРРЕН Жан Батист (), французский физик. Экспериментальные исследования Перреном броуновского движения () окончательно доказали реальность существования молекул. Нобелевская премия (1926).


Опыты Перрена Наблюдал броуновские частицы в очень тонких слоях жидкости Сделал вывод, что концентрация частиц в поле силы тяжести должна убывать с высотой по такому же закону, что и концентрация молекул газа. Преимущество - масса броуновских частиц за счёт большой массы происходит быстрее. На основе подсчёта этих частиц на разных высотах определив постоянную Авогадро новым способом.


МАКСВЕЛЛ Джеймс Клерк ((), английский физик, создатель классической электродинамики, один из основоположников статистической физики Максвелл первым высказал утверждение о статистическом характере законов природы. В 1866 им открыт первый статистический закон закон распределения молекул по скоростям (Максвелла распределение).


БОЛЬЦМАН Людвиг (), австрийский физик, один из основателей статистической физики и физической кинетики. Вывел функцию распределения, названную его именем, и основное кинетическое уравнение газов. Больцман обобщил закон распределения скоростей молекул в газах, находящихся во внешнем силовом поле, и установил формулу распределения молекул газа по координатам при наличии произвольного потенциального поля ().


ШТЕРН Отто (), физик. Родился в Германии, с 1933 жил в США. Отто Штерн измерил (1920) скорость теплового движения молекул газа (опыт Штерна). Экспериментальное определение скоростей теплового движения молекул газа, осуществленное О. Штерно м подтвердил правильность основ кинетической теории газов. Нобелевская премия, 1943 год.






Опыт Штерна Цилиндры начинали вращать с постоянной угловой скоростью. Теперь атомы, прошедшие сквозь прорезь, оседали уже не прямо напротив щели, а смещались на некоторое расстояние, так как за время их полёта внешний цилиндр успевал повернуться на некоторый угол. При вращении цилиндров с постоянной скоростью, положение полоски, образованной атомами на внешнем цилиндре, смещалось на некоторое расстояние.


Опыт Штерна Зная величины радиусов цилиндров, скорость их вращения и величину смещения легко найти скорость движения атомов. Время полета атома t от прорези до стенки внешнего цилиндра можно найти, разделив путь, пройденный атомом и равный разности радиусов цилиндров, на скорость атома v. За это время цилиндры повернулись на угол φ, величину которого найдем, умножив угловую скорость ω на время t. Зная величину угла поворота и радиус внешнего цилиндра R 2, легко найти величину смещения L и получить выражение, из которого можно выразить скорость движения атома


Подумайте … Многократные повторения опыта Штерна позволили установить, что с увеличением температуры участок полосы с максимальной толщиной смещается к началу. Что это значит? Ответ: при увеличении температуры скорости молекул возрастают, и тогда наиболее вероятная скорость находится в области высоких температур.

Из формул

получаем формулу для расчета средней квадратичной скорости движения молекул одноатомного газа:

где R - универсальная газовая постоянная.

Таким образом зависит от температуры и природы газа. Так, при 0°С для водорода она равна 1800 м/с. для азота - 500 м/с.

Впервые на опыте определил скорость молекул О. Штерн. В камере, из которой откачан воздух, находятся два коаксиальных цилиндра 1 и 2 (рис. 1), которые могут вращаться вокруг оси с постоянной угловой скоростью .

Вдоль оси натянута платиновая посеребренная проволока, через которую пропускают электрический ток. Она нагревается, и серебро испаряется. Атомы серебра через щель 4 в стенке цилиндра 2 попадают в цилиндр 1 и оседают на его внутренней поверхности, оставляя след в виде узкой полоски, параллельной щели. Если цилиндры неподвижны, то полоска расположена напротив щели (точка В на рис. 2, а) и имеет одинаковую толщину.

При равномерном вращении цилиндра с угловой скоростью полоска смещается в сторону, противоположную вращению, на расстояние s относительно точки В (рис. 2, б). На такое расстояние сместилась точка В цилиндра 1 за время t, которое необходимо, чтобы атомы серебра прошли расстояние, равное R - r, где R и r - радиусы цилиндров 1 и 2.

где - линейная скорость точек поверхности цилиндра 1. Отсюда

Скорость атомов серебра

Зная R, r, и измерив экспериментально s, по этой формуле можно рассчитать среднюю скорость движения атомов серебра. В опыте Штерна . Это значение совпадает с теоретическим значением средней квадратичной скорости молекул. Это служит экспериментальным доказательством справедливости формулы (1), а следовательно, и формулы (3).

В опыте Штерна было обнаружено, что ширина полоски на поверхности вращающегося цилиндра гораздо больше геометрического изображения щели и толщина ее в разных местах неодинакова (рис. 3, а). Это можно объяснить только тем, что атомы серебра движутся с различными скоростями. Атомы, летящие с некоторой скоростью, попадают в точку В’. Атомы, летящие быстрее, попадают в точку, лежащую на рисунке 2 выше точки В’, а летящие медленнее, - ниже точки В’. Таким образом, каждой точке изображения соответствует определенная скорость, которую достаточно просто определить из опыта. Этим и объясняется то, что толщина слоя атомов серебра, осевших на поверхности цилиндра, не везде одинакова. Наибольшая толщина в средней части слоя, а по краям толщина уменьшается.

Изучение формы сечения полоски осевшего серебра с помощью микроскопа показало, что она имеет вид, примерно соответствующий изображенному на рисунке 3, б. По толщине отложившегося слоя можно судить о распределении атомов серебра по скоростям.

Разобьем весь интервал измеренных на опыте скоростей атомов серебра на малые . Пусть - одна из скоростей этого интервала. По плотности слоя подсчитаем число атомов, имеющих скорость в интервале от , и построим график функции

где N - общее число атомов серебра, осевших на поверхности цилиндра. Получим кривую, изображенную на рисунке 4. Она называется функцией распределения молекул по скоростям.

Площадь заштрихованной площадки равна

т.е. равна относительному числу атомов, имеющих скорость в пределах

Мы видим, что числа частиц, имеющих скорость из разных интервалов , резко различны. Существует какая-то скорость, около значения которой находятся скорости, с которыми движется наибольшее число молекул. Она называется наиболее вероятной скоростью , и ей соответствует максимум на рисунке 4. Эта кривая хорошо соответствует кривой, полученной Дж. Максвеллом, который, пользуясь статистическим методом, теоретически доказал, что в газах, находящихся в состоянии термодинамического равновесия, устанавливается некоторое, не меняющееся со временем, распределение молекул по скоростям, которое подчиняется вполне определенному статистическому закону, графически изображаемому кривой . Наиболее вероятная скорость, как показал Максвелл, зависит от температуры газа и массы его молекул по формуле

В середине XIX века была сформулирована молекулярно-кинетическая теория, но тогда не было никаких доказательств существования самих молекул. Вся теория базировалась на предположении о движении молекул, но как измерить скорость их движения, если они невидимы?

Теоретики первыми нашли выход. Из уравнения молекулярно-кинетической теории газов известно, что

Получена формула для расчета среднеквадратичной скорости, но масса молекулы неизвестна. Запишем по-другому значение υ кв:

(2.1.2)

А мы знаем, что , тогда

(2.1.3)

Где Р – давление; ρ - плотность. Это уже измеряемые величины.

Например, при плотности азота, равной 1,25 кг/м, 3 , при t = 0 °С и P = 1 атм, скорости молекул азота . Для водорода: .

При этом интересно отметить, что скорость звука в газе близка к скорости молекул в этом газе , где γ – коэффициент Пуассона. Это объясняется тем, что звуковые волны переносятся молекулами газа.

Проверка того факта, что атомы и молекулы идеальных газов в термически равновесном пучке имеют различные скорости, была осуществлена немецким физиком Отто Штерном (1888-1969) в 1920 г. Схема его установки приведена на рис. 2.1.


Рис. 2.1

Платиновая нить А , покрытая снаружи серебром, располагается вдоль оси коаксиальных цилиндров S 1 , S 3 ,. Внутри цилиндров поддерживается низкое давление порядка Па. При пропускании тока через платиновую нить она разогревается до температуры выше точки плавления серебра (961,9 °С). Серебро испаряется, и его атомы через узкие щели в цилиндре S 1 , и диафрагме S 2 , летят к охлаждаемой поверхности цилиндра S 1 , на которой они осаждаются. Если цилиндры S 1 , S 3 и диафрагма не вращаются, то пучок осаждается в виде узкой полоски D на поверхности цилиндра S 3 . Если же вся система приводится во вращение с угловой скоростью то изображение щели смещается в точку и становится расплывчатым.

Пусть l – расстояние между D и , измеренное вдоль поверхности цилиндра S 3 , оно равно где – линейная скорость точек поверхности цилиндра S 3 , радиусом R ; - время прохождения атомами серебра расстояния . Таким образом, имеем откуда – можно определить величину скорости теплового движения атомов серебра. Температура нити в опытах Штерна равнялась 1200 °С, что соответствует среднеквадратичной скорости . В эксперименте для этой величины получилось значение от 560 до 640 м/с. Кроме того, изображение щели всегда оказывалось размытым, что указывало на то, что атомы Ag движутся с различными скоростями.

Таким образом, в этом опыте были не только измерены скорости газовых молекул, но и показано, что они имеют большой разброс по скоростям. Причина – в хаотичности теплового движения молекул. Ещё в XIX веке Дж. Максвелл утверждал, что молекулы, беспорядочно сталкиваясь друг с другом, как-то «распределяются» по скоростям, причём вполне определённым образом.

правильность основ кинетической теории газов . Исследуемым газом в опыте служили разреженные пары серебра, которые получались при испарении слоя серебра, нанесённого на платиновую проволоку, нагревавшуюся электрическим током. Проволока располагалась в сосуде, из которого воздух был откачан, поэтому атомы серебра беспрепятственно разлетались во все стороны от проволоки. Для получения узкого пучка летящих атомов на их пути была установлена преграда со щелью, через которую атомы попадали на латунную пластинку, имевшую комнатную температуру. Атомы серебра осаждались на ней в виде узкой полоски, образуя серебряное изображение щели. Специальным устройством весь прибор приводился в быстрое вращение вокруг оси, параллельной плоскости пластинки. Вследствие вращения прибора атомы попадали в др. место пластинки: пока они пролетали расстояние l от щели до пластинки, пластинка смещалась. Смещение растет с угловой скоростью w прибора и уменьшается с ростом скорости v атомов серебра. Зная w и l , можно определить v. Т. к. атомы движутся с различными скоростями, полоска при вращении прибора размывается, становится шире. Плотность осадка в данном месте полоски пропорциональна числу атомов, движущихся с определённой скоростью. Наибольшая плотность соответствует наиболее вероятной скорости атомов. Полученные в Штерна опыт значения наиболее вероятной скорости хорошо согласуются с теоретическим значением, полученным на основе Максвелла распределения молекул по скоростям.

Статья про слово "Штерна опыт " в Большой Советской Энциклопедии была прочитана 5744 раз